Training of fuzzy neural networks via quantum-behaved particle swarm optimization and rival penalized competitive learning

نویسنده

  • Saeed Farzi
چکیده

There are some difficulties encountered in the application of fuzzy Radial Basis Function (RBF) neural network. One of them is how to determine the number of hidden rule neurons and another difficulty is about interpretability. In order to overcome these difficulties, we have proposed a fuzzy neural network based on RBF network and takagi-sugeno fuzzy system. We have used a new structure of fuzzy RBF neural network, which has been proved that it is better than other structures in term of interpretability. Our model also use a Rival Penalized Competitive Learning (RPCL) and a swarm based algorithm called Quantum-behaved Particle Swarm Optimization (QPSO) to determine design parameters of hidden layer and design parameters of output layer, respectively. RPCL is the best clustering algorithm that is introduced so far. The Particle Swarm Optimization (PSO) is a well-known population-based swarm intelligence algorithm. The QPSO is also proposed by combining the classical CPSO philosophy and quantum mechanics to improve performance of PSO. We have compared the performance of the proposed method with gradient based method. Simulation results of nonlinear function approximation demonstrate the superiority of the proposed method over gradient based method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS

In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...

متن کامل

Fuzzy Neural Networks Learning by Variable- dimensional Quantum-behaved Particle Swarm Optimization

The evolutionary learning of fuzzy neural networks (FNN) consists of structure learning to determine the proper number of fuzzy rules and parameters learning to adjust the network parameters. Many optimization algorithms can be applied to evolve FNN. However the search space of most algorithms has fixed dimension, which cannot suit to dynamic structure learning of FNN. We propose a novel techni...

متن کامل

A Review of Training Methods of ANFIS for Applications in Business and Economics

Fuzzy Neural Networks (FNNs) techniques have been effectively used in applications that range from medical to mechanical engineering, to business and economics. Despite of attracting researchers in recent years and outperforming other fuzzy systems, Adaptive Neuro-Fuzzy Inference System (ANFIS) still needs effective parameter training and rulebase optimization methods to perform efficiently whe...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2012